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We develop a systematic computational approach, which includes the genetic algorithm (GA) search method,
to the minimal bromate reaction system, to automate the determination of its reaction mechanism and rate
coefficients. We take the 10 species of the system as given, and then determine all possible bimolecular
elementary reaction steps and all possible combinations of these steps that fulfill the given overall reaction.
The optimization criteria used in the GA are chosen to be the following: The reaction mechanism must have
an unstable focus, or must have oscillations; has specified ranges of periods of oscillations; and has specified
ranges of inflow conditions. With rate coefficients given by Field, Ko¨rös, and Noyes1, we find reaction
mechanisms with four and five elementary reaction steps that show oscillations but do not fit well the
experimental [Br-]0 - [BrO3

-]0 oscillation domain. We then determine, by GA, a set of rate coefficients in
one particular five-step reaction mechanism that gives very good agreement with all comparable experiments.
The Noyes, Field, Thompson model mechanism2 for this reaction has seven elementary reaction steps. The
first five, with our GA determined rate coefficients, are sufficient for the good agreement with experiment;
the last two are not necessary. We believe that the example developed here in detail shows the utility and
promise of GA methods in chemical kinetics.

I. Introduction

Genetic algorithms (GAs) are optimization methods of parallel
computations designed to achieve a stated goal. Their first
application to chemical kinetics3 was on a simple model of
reactions from a reservoir of F (food) to a reservoir of T (ATP),
and the reverse, via two intermediates A and B. Both the Af
B and Bf A reactions were catalyzed by enzymes and both F
and T acted as effectors on these enzymes. Michaelis-Menten
noncompetitive allosteric binding mechanisms were assumed
for the four effector reactions. The eight parameters in these
reactions were then chosen by GA with the optimization of the
flow from F to T, and its reverse, according to specific cellular
needs, as the concentrations of the reservoirs of F and T were
varied externally. The method yielded parameters for systems
that successfully (adequately) switched the flows as required
and thus survived; it also could change the reaction mechanism
itself by eliminating an enzyme entirely, say for the B to A
conversion. The results were interesting: No system was a
global winner; successful (surviving) systems developed by
selection reciprocal regulation and negative feedback solely due
to the optimization requirement; a variety of regulatory systems
survived, thus allowing for biodiversity.

In this article, we investigate several types of applications of
GA methods to solving problems in chemical kinetics, which
include searches for reaction mechanisms and rate coefficients.
For purpose of illustration, we choose the Ce-catalyzed minimal
bromate system, which has been investigated in some detail.
This nonlinear open system can be in a stable stationary state,
node, or focus, or in a unstable focus, which suggests, but does
not necessitate, a stable limit cycle. For the system, we assume

that the reacting species (either 9 or 10) are given. We then
find solutions for the following searches:

1. A search for elementary steps which individually satisfy
the stoichiometric conditions of charge and mass conservation;
and the sum of elementary steps, each multiplied by an
appropriate stoichiometric number, must satisfy the overall
reaction of the system.

2. Searches with different optimization criteria: search for
unstable focus, oscillations, specified period, specified inflow
concentrations, and so forth.

3. Searches for different oscillatory reaction mechanisms (sets
of elementary steps) and inflow conditions (flows rates and
concentrations that lead to oscillations) for given rate coefficients
and a postulated reaction mechanism.

4. A search for sets of rate coefficients in given reaction
mechanisms to fit available experiments on oscillations (period
and shape).

II. Search for Elementary Steps in Steady States

We choose as an illustration the minimal bromate reaction
system,4,5 and assume as given the chemical species

This reaction has been modeled by several mechanisms; one
is the NFT mechanism,2 which is an important part of the
FKN (Field-Körös-Noyes) mechanism1 of the oscillatory
Belousov-Zabotinskii reaction,6,7 Its complex behavior has
been studied experimentally in a continuous-flow stirred tank
reactor (CSTR).8 The rate equations for such open system are
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BrO3
-, HBrO2, HOBr, BrO2

•, Br-, H+,

Ce4+, Br2, Ce3+, H2O (1)
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described in a vector form by

wheref(C) is the mass action rates of individual reactions;C is
a concentration vector for the species;VSR is a stoichiometric
matrix of the species, andR is the number of elementary reaction
steps;C0 is a feed (BrO3

-, Br-, H+, Ce3+) concentration vector;
andk0(C - C0) describes the flow terms with flow ratek0. In
steady states, there are element balance conditions for the
reactions9

where the system formula matrix (or atomic matrix)A is given
by

and the element balance vectorδn is

The set of null space vectors of the matrixA represents the
independent reactions, which satisfies the stoichiometric condi-
tion of mass conservation. If we select all possible bimolecular
reactions among all the species, but permit H2O and H+ to be
additional reactants, and impose conservation of atoms and
charge, then we find that linear combinations of the independent
reactions yield 7 elementary steps

which constitute precisely the NFT mechanism. This result is
accidental; for example, it is not the result in the Citri-Epstein
mechanism for the chlorite-iodide reaction.10

A. Overall Reaction. In the literature,2 the NFT mechanism
is represented by the following overall reaction

In this section, we check the consistency between the overall
reaction 7 and elementary steps 6; we need to find out how
many of each of the elementary steps 6 are necessary for the
generation of the overall reaction. We designate the stoichio-
metric vector attached to the overall reaction 7 as

where the negative sign is for a reactant and the positive for a
product (see the order of species in 5). From the overall reaction
7, we see that there are 4 intermediates, Br-, HBrO2, BrO2

•,
Br2. To obtain the overall reaction, we add up the elementary
steps, each of the elementary reactions being multiplied by a
stoichiometric number.11 In the result, we require that the
stoichiometric coefficients of the intermediates are equal to
zero.11 In other words, the total number ofith intermediates
created by allS steps,fi, must vanish, that is

or in matrix form

wherens is the stoichiometric number for thesth reaction step,
andbis is the stoichiometric coefficient ofith intermediates in
thesth step. Therefore, the null space of the matrixB represents
the overall reactions. To satisfy the overall reaction 7, there
must be included at least one of the following vector sets of
elementary reaction steps in the NFT mechanism 6

Consider the setv1 ) (4, 5, 7) as an example, where the matrix
B is given by the stoichiometric coefficients of the intermediates
Br-, HBrO2, BrO2

•, Br2 in the steps (4,5,7)

Then, the null space ofB(v1) yields a stoichiometric number
vectornv1 ) (-2, -4, 1) and the overall reaction (8) isnv1 ‚ v1.
As a result, there are3 three-step,13 four-step,16 five-step,
and7 six-step combinations that satisfy this requirement. We
apply GAs to search for oscillatory reaction mechanisms among
those sets of reactions.

B. Steady States and Independent and Dependent Species.
Because the number of species is greater than the number of
steady-state equations for the above sets of reactions, we have
to find relations between independent and dependent species
to solve the steady-state equations. There exists a matrixâ12

such that

where the rank ofâ is the number of dependent species
(concentrations). Because the matrixv is the stoichiometric
matrix, eq 13 indicates conservation of atoms, or combinations
of atoms, in a steady state. Multiplying both sides of the rate
equations (2) byâ, we haveâ(C0 - C) ) 0, and then defining

the relationship between independent and dependent concentra-

dC
dt

) W ‚ f(C) + k0(C - C0) (2)

A ‚ δn ) 0 (3)

A ) (1 1 1 1 1 0 0 2 0 0
3 2 1 2 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 2
0 0 0 0 0 0 1 0 1 0

) (4)

δn ) (δBrO3
-, δHBrO2

, δHOBr, δBrO2
•, δBr-, δH+,

δCe4+, δBr2
, δCe3+, δH2O

) (5)

1. Br- + BrO3
- + 2H+ H HBrO2 + HOBr

2. Br- + HBrO2 + H+ H 2HOBr

3. Br- + H+ + HOBr H Br2 + H2O (6)

4. BrO3
- + H+ + HBrO2 H 2BrO2

• + H2O

5. Ce3+ + BrO2
• + H+ H Ce4+ + HBrO2

6. Ce4+ + BrO2
• + H2O H BrO3

- + Ce3+ + 2H+

7. 2HBrO2 H BrO3
- + H+ + HOBr

BrO3
- + 4Ce3+ + 5H+ f 4Ce4+ + HOBr + 2H2O (7)

noverall ) (-1, 0, 1, 0, 0,-5, 4, 0,-4, 2) (8)

fi ) ∑
s ) 1

S

bisns ) 0 (9)

Bns ) 0 (10)

v ) {(4, 5, 7), (4, 6, 7), (5, 6, 7), (1, 2, 4, 5), (1, 2, 4, 6),
(1, 2, 5, 6)} (11)

B(v1) ) ( 1 -1 2
-2 1 0

0 0 0
0 0 0

) (12)

âW ) 0 (13)

â ) (âdep, âind), C ) (Cdep

Cind
), C0 ) (C0dep

C0ind
)
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tions can be obtained by

where rank(â) ) rank(âdep), andr ) -âdep
-1âind. Then solving

Cind ) 0, we obtain dependent steady-state concentrationsCs,dep

from 14. For the full set of reaction steps (NFT), we have
(excluding H2O, for which the concentration is considered to
be constant)

andâ is obtained by

whereâind (4 by 5) is the part ofâ matrixes taking from the
first column to the fifth, andâdep (4 by 4) is the rest of the
matrix component. From eq 14, the dependent steady-state
concentrations [H+]s, [Ce4+]s, [Br2]s, [Ce3+]s are obtained from
the independent steady-state concentrations [BrO3

-]s, [HBrO2]s,
[HOBr]s, [BrO2

•]s, and [Br-]s. We see that the first two row
vectors inâ express the conservation of bromine and cerium
atoms, respectively, whereas the two bottom lines were chosen
to be orthogonal to both the two rows and to the columns ofv.

Linear stability analysis of steady state is obtained by
expanding the rate eqs 2 around a given steady state,Cs, (dCs/
dt ) 0); for a small perturbationδC, the rate equations up to
the linear term is

where the Jacobian matrix isJij(Cs) ) d/dδCj(W ‚ f(C) + k0(C
- C0))i|Cs. Eigenvalues of the Jacobian are negative and real
for a node; for a stable focus, there is a pair of conjugate
eigenvalues with negative real part; for an unstable focus, there
is a pair of conjugate eigenvalues with positive real part.

III. Use of Genetic Algorithms to Search for Oscillatory
Mechanisms: A Robust Parallel Search in Complex
Spaces

In this section, a genetic algorithm method13 is used to search
for oscillatory mechanisms in 3-step, 4-step, and 5-step com-
binations as discussed in the previous section. Full descriptions
of genetic algorithms can be found in the literature.13,14 We
briefly summarize the structure of genetic algorithms. GAs
operate on sets of strings of numbers, which are changed from
generation to generation. This transformation of the pool of
numerical strings is governed by simple laws, which are
analogues of the processes of selection, crossover and mutation

in the gene pool which occur during the evolution of a biological
population (survival of main part of a gene during a transfer
from one generation to the next through the occurrence of
crossover and mutation toward larger fitness values). A simple
GA involves nothing more complex than copying strings and
swapping partial strings, but still manifests a powerful robust
optimization procedures. Our GA has the three operations:
reproduction, crossoVer, andmutation.

A. Reproduction. The GA works with a binary coding of
parameter sets, which represent rate coefficients, inflow con-
centrations, species, and so forth. We encode a parameter into
a binary string. If a parameter space is a rate coefficient, which
can be represented as power of ten, 10-P (-10 e P e 10),
then a simple binary coding is

where 0e R e 218 - 1. We set the string length to 18 bits and
R is encoded into a binary string. For example, ifR ) 1297010

the binary string ofR is 0000110010101010102, and the rate
coefficient is 9.07× 10-7. The string length determines the
length of the discretized search (parameter) space. An individual
has a set of parameters represented by a binary string (chromo-
some). Reproduction is a process in which individual strings
are copied according to their objective (typically scalar) fitness
function, f, determined by optimization criteria; strings with a
higher fitness value have a higher probability of transferring
into the next generation (offspring). Thus, designing of the
fitness function from the optimization criteria is an essential
part of GAs. In our study, we search for an unstable focus,
located inside a stable limit cycle, which is common for
chemical oscillators. We use the Jacobian of the kinetic
equations to detect unstable foci, which have a pair of complex
conjugate eigenvalues with positive real part. Our trial fitness
function14 is given by

whereA ) 70, B ) 10, C ) 50, D ) 10-5, andx is the real
part andy is the imaginary part of the Jacobian matrix given in
eq 17. The fitness function assigns each individual a fitness
value according to the steady states of the system: node (lowest
fitness), stable focus, and unstable focus (highest fitness). The
reproduction operator can be implemented in algorithmic form
in a number of ways. We employ a biased roulette wheel where
each string in the population (a group of individuals) has a
roulette wheel slot sized in proportion to its fitness. One way
to do this is to calculate a set of partial sums of the fitness for

each individual,{S1,...,Sm )
m
∑
i)1

fi,..,Sn}, where the positivefi

(1 e i e n) is each individual fitness. We create a random
numberSR betweenS1 and the total sum of all individuals’s
fitness values,Sn. Then we select an individual from the
population, such that the selected individual with fitnessfm is
the one in which the last element in the set of the partial sums
is not greater than the random numberSR, that is, whereSm e
SR e Sm+1 is satisfied. In this way, more strings of higher fitness
have a higher number of offspring in the succeeding generation
(probabilistic transition rule). In addition, we automatically
transfer strings, for which fitness values correspond to unstable
foci, to the next generation (elitism).

B. Crossover and Mutation Operators. To avoid the
convergence to a single point in the parameter space of
succeeding generations, genetic operators such as crossover and

Cdep) RCind - RC0ind + C0dep (14)

v ) ( 1 0 0 1 0 -1 -1
-1 1 0 1 -1 0 2
-1 -2 1 0 0 0 -1

0 0 0 -2 1 1 0
1 1 1 0 0 0 0
2 1 1 1 1 -2 -1
0 0 0 0 -1 1 0
0 0 -1 0 0 0 0
0 0 0 0 1 -1 0

) (15)

â ) ( 1 1 1 1 1 0 0 2 0
0 0 0 0 0 0 1 0 1

2 - 41
10

- 3
2

- 27
5

49
5

- 87
10

-5 - 2
5

5

- 53
14

- 81
28

1
28

- 61
14

5 - 57
28

- 7
4

3
7
4

) (16)

dδC
dt

) J(Cs)δC (17)

P ) 10-20‚ R

(218 - 1)
(18)

f ) A + B tanh ((ex + 1) (x + 1)) - Ce-y2/D (19)
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mutation are employed. The action of crossover takes two strings
and recombines them; it produces new strings (children) by
cutting the given strings at the same points (crossover point),
swapping alternate fragments between the two, and joining the
fragment together. For the involved individuals, the selection
process creates random numbers between 0 and 1 for a pair of
strings, and if the random number is less than a given crossover
probability, Pc, then crossover will occur between a pair of
strings; we use one point crossover (Pc ) 0.5) and a cross point
is chosen randomly. The action of mutation is to flip one or
more bits in the bit string. For mutation, letPm be the mutation
probability per bit for each string; if the choice of the random
number for a given bit is less thanPm, then the bit is changed.
We setPm ) 0.08. The above genetic procedures are terminated
when all individuals in the population become unstable foci.

IV. Search for Different Oscillatory Reaction
Mechanisms and Inflow Concentrations that Lead to
Oscillations for Given Rate Coefficients

Bar-Eli and Geiseler4 carried out experiments to determine
the oscillation domain in the [Br-]0-[BrO3

-]0 subspace under
fixed inflow concentrations [Ce3+]0 ) 3 × 10-4 M, [H+]0 )
0.75M and a given flow ratek0 ) 5 × 10-3 sec-1. They show
that oscillations occur in the range of inflow concentrations:
1.00× 10-1 M < [BrO3

-]0 < 1.60× 10-1 M and 3.2× 10-4

M < [Br-]0 < 6.00 × 10-4 M, and in the range of period:
155-490 (see Table 1). The experimental domain is estimated
from Figure 3 given in Bar-Eli and Geiseler.4 To compare with
the experimental oscillation domain in the [Br-]0-[BrO3

-]0

subspace, Bar-Eli and Geiseler used the NFT mechanism with
the FKN rate coefficients to calculate the various oscillatory
domains corresponding to the different flow rates, proton
concentrations and Ce3+ inflow concentrations.

In section IIA, we have shown that there are 3 different three-
step, 13 four-step, and 16 five-step possible mechanisms that
are compatible with the overall reaction 6. We use the GA
approach for searching which of these possible reaction mech-
anisms have oscillation domains compatible with the numerical
results obtained by Bar-Eli and Geiseler,4 and Bar-Eli and Field.5

We use FKN rate coefficients (see Table 2) and focus the search
space for [Br-]0 on R1 × 10-4 and for [BrO3

-]0 on R2 × 10-1

(0 e R1, R2 e 10) under fixed inflow concentrations [Ce3+]0 )

3 × 10-4 M, [H+]0 ) 0.75M and a given flow ratek0 ) 5 ×
10-3 sec-1. The GA (written in Mathematica 4.0) was carried
out for 10 populations, each of which has 8 individuals (string
size: 18 bits) and up to 120 generations. CPU time (Pentium II

TABLE 1: Domains of Oscillations in [Br -]0-[BrO 3
-]0

Subspace and Periods of Oscillation from Experiments,4

TFFK, 5 and Group I and II Reaction Mechanisms Provided
by the GAa

inflow [BrO3
-]0 [Br-]0 period

experiment (1.00-1.60)× 10-1 (3.20-6.00)× 10-4 155-490
TFFK(6-steps) (0.70-1.10)× 10-1 (2.50-3.40)× 10-4 240-620

GA
group I
(1,2,4,5) (1.42-1.96)× 10-1 (1.36-2.15)× 10-4 81-581
(1,2,4,5,6) (1.42-1.96)× 10-1 (1.36-2.15)× 10-4 81-473
(1,2,4,5,7) (1.42-1.96)× 10-1 (1.36-2.15)× 10-4 81-540
group II
(1,2,3,4,5) (1.50-2.00)× 10-1 (4.07-6.15)× 10-4 100-581
NFT steps (1.50-2.00)× 10-1 (4.07-6.15)× 10-4 100-600

aSee text. Constant constraints of calculation: [Ce3+]0 ) 3 × 10-4

M [H +]0 ) 0.75 M andk0 ) 5 × 10-3 sec-1. The oscillatory domains
for two different groups of mechanisms obtained by the genetic
algorithm are calculated with the FKN rate coefficients in Table II;
The experimental domain is an estimated value from Figure 3 given in
Bar-Eli and Geiseler (ref 4); the domain of the TFFK mechanism from
Figure 3 given in Bar-Eli and Field (ref 5), where the periods are
calculated.

Figure 1. Calculated oscillations for the group I mechanisms: (a) the
4-step mechanism (1,2,4,5); (b) 5-steps (1,2,4,5,6); (c) the 5-step
mechanism (1,2,4,5,7) at [Br-]0 ) 1.80× 10-4 M, [BrO3

-]0 ) 1.95×
10-1 M, [Ce3+]0 ) 3 × 10-4 M, [H+]0 ) 0.75 M, andk0 ) 5 × 10-3

sec-1. The figure shows that the form of the oscillations are shifted
only in phase among these 3 reaction mechanisms; the 4 step (1,2,4,5)
is an irreducible mechanism, and the elementary steps 6 or 7 are not
essential for an oscillatory mechanism.

Figure 2. Calculated oscillations for the group II mechanisms: (a)
the 5-step mechanism (1,2,3,4,5); (b) the 7-step mechanism (1,2,3,4,5,6,7)
at [Br-]0 ) 5.13× 10-4 M and [BrO3

-]0 ) 1.76× 10-1 M, [Ce3+]0 )
3 × 10-4 M, [H+]0 ) 0.75 M, andk0 ) 5 × 10-3 sec-1. In the figure,
the forms of the oscillations in these two sets are identical; the 5 step
(1,2,3,4,5) is an irreducible set, and steps 6 and 7 are not essential
steps in the 7 NFT steps with the FKN rate coefficients.
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400 MHz) necessary to complete the search is about 4-6 h
(10-20 s from one generation to the next).

We find no chemical oscillations in any of the three 3 -step
reaction sets (no unstable foci and no hysteresis were found).

The GA reveals that there are two different groups of
oscillatory mechanisms in the 4 -step and 5 -step sets (see Table
1). The first group of reaction sets of elementary steps (group
I) consists of the reactions (1,2,4,5), (1,2,4,5,6), and (1,2,4,5,7).
These sets have 9 species (no Br2) with 4 independent species
(concentrations). We see from Figure 1 (calculated at [BrO3

-]
) 1.80× 10-1 M and [Br-]0 ) 1.95× 10-4 M) that the form
of the oscillations are shifted only in phase among these 3
reaction mechanisms; thus, the 4 step (1,2,4,5) is an irreducible
mechanism and the elementary steps 6 or 7 are not essential
for an oscillatory mechanism. In the (1,2,4,5) mechanism, we

find (see Table 1) that oscillations occurs in the range of the
inflow domain [BrO3

-]0-[Br-]0: 1.42× 10-1 M e [BrO3
-]0

e 1.96× 10-1 M and 1.36× 10-4 M e [Br-]0 e 2.15× 10-4

M, and in the range of period: 81-581. Periods in Table 1 are
shown around the middle of the lower and upper limits of
[BrO3

-]0 (fixed [Br-]0); a sharp increase in period occurs near
the boundary of [BrO3-]0 in the upper limit of the oscillation
domain.

The second group (group II) consist of reactions (1,2,3,4,5)
and (1,2,3,4,5,6,7). The two sets involve 10 species of which 5
are independent species. At [BrO3

-]0 ) 1.76 × 10-1 M and
[Br-]0 ) 5.13 × 10-4 M (see Figure 2) the forms of the
oscillations in these two sets are identical; therefore, the 5 step
(1,2,3,4,5) is an irreducible set and steps 6 and 7 are (again)
not essential steps in the 7 NFT steps with the FKN rate
coefficients. In the (1,2,3,4,5) mechanism, oscillations occur in
the range of the inflow domain [BrO3-]0-[Br-]0: 4.07× 10-4

M e [Br-]0 e 6.15× 10-4 M and 1.50× 10-1 M e [BrO3
-]0

e 2.00× 10-1 M, and in the range of period: 100-600.
In the mechanisms of both groupI and II , there are five

essential species,15 HBrO2, HOBr, BrO2
•, Br-, Ce3+, which are

necessary to have oscillations in the NFT mechanism. Although
the above oscillatory domains are near the experimental one,
and the periods and shapes of the oscillations are compatible
with the experimental results, both group I and II reaction
mechanisms with the FKN rate coefficients do not fit experi-
mental results well (see Table 1); the [Br-]0 range for the 4-step
mechanism (1,2,4,5) is off from the experiment, whereas the
[BrO3

-]0 range on the 5-step mechanism (1,2,3,4,5) is off. In
the next section, we focus on the 4 and 5 step mechanisms in
group I and II. We do a GA search for rate coefficients that
yield unstable foci at four experimental points in the [Br-]0-
[BrO3

-]0 space and then find excellent agreements with the
experiments.

V. Search for Sets of Rate Coefficients in Given Reaction
Mechanisms to Fit Available Experiments on Oscillations
(Period and Shape)

There have appeared a number of numerical studies,4,5,16for
the minimal bromate system that compare the results of
computer simulations for different mechanisms with the ex-
perimental data for the oscillatory regime.4 However, none of
the suggested mechanisms with given rate coefficients reproduce
the experimental [Br-]0-[BrO3

-]0 domain well (see, for
example, the range of the [Br-]0 and [BrO3

-]0 inflow for the
TFFK and the NFT mechanisms in Table 1). Furthermore, large
discrepancies (see Table 2) of the rate coefficients assigned to
the different mechanisms5 are found. In this section, we search
for rate coefficients for the 4- or 5-step mechanisms that fit the
experimental domain. To do so, we search for rate coefficients
that yield unstable foci in the reaction mechanisms for all four
experimental conditions in the [Br-]0-[BrO3

-]0 inflow domain.
Those experimental points are [Br-]0 ) 3.90 × 10-4 M and
[BrO3

-]0 ) 1.12 × 10-1 M, [Br-]0 ) 4.20 × 10-4 M and
[BrO3

-]0 ) 1.25 × 10-1 M, [Br-]0 ) 4.80 × 10-4 M and
[BrO3

-]0 ) 1.40× 10-1 M, and [Br-]0 ) 5.30× 10-4 M and
[BrO3

-]0 ) 1.55 × 10-1 M, where experimental periods are
available for the last 3 points (see Table 4). We use the FKN
equilibrium constantsKeq, thus ensuring thermodynamically
consistent rate coefficients, for obtaining backward rate coef-
ficients from the forward ones; thus, there are four forward rate
coefficients (parameters) for the 4-step mechanism and 5 rate
coefficients for the 5-step mechanism to be found with the GA.
Because it is difficult to search for rate coefficients fulfilling

Figure 3. The shapes of temporal wave and periods for the 5-step
mechanism (1,2,3,4,5) at the two experimental points in the [Br-]0-
[BrO3

-]0 domain with the rate coefficients used in Table 5. The two
experimental points: (a) [Br-]0 ) 4.20× 10-4 M and [BrO3

-]0 ) 1.25
× 10-1 M and (b) [Br-]0 ) 4.80× 10-4 M, [BrO3

-]0 ) 1.40× 10-1

M. It shows the periods from (a) and (b), which are 253 and 183, are
in excellent agreement with the experimental values, 260 and 183,
respectively. Calculation constants:k0 ) 5 × 10-3 sec-1, [Ce3+]0 ) 3
× 10-4 M, [H+]0 ) 0.75 M. The shapes are very similar to the
experimental wave form but a direct comparison of shapes between
the calculation and the experiment with these parameters is not feasible.

TABLE 2: Various Sets of Rate Coefficients for the NFT
Mechanism

rate
coeff FKN TFFK TFF “Lo” “Hi”

k1 2.1 2 2 2 2
k-1 1.0× 104 3.2 3.2 10 1.0× 104

k2 2.0× 109 3.0× 106 3.0× 106 2.0× 106 2.0× 109

k-2 5.0× 10-5 2.0× 10-5 2.0× 10-5 5.0× 10-5 5.0× 10-5

k3 8.0× 109 3.0× 109 8.0× 109 8.0× 109 8.0× 109

k-3 110 2 110 110 110
k4 1.0× 104 42 42 10 7.0× 103

k-4 2.0× 107 4.2× 107 4.2× 107 2.0× 107 2.0× 107

k5 6.5× 105 8.0× 104 8.0× 104 6.0× 105 6.0× 105

k-5 2.4× 107 8.9× 103 8.9× 103 2.0× 106 5.0× 107

k6 9.6 0 0 10 10
k-6 1.3× 10-4 0 0 1.5× 10-6 4.2× 10-5

k7 4.0× 107 3.0× 103 3.0× 103 2.0× 103 2.0× 109

k-7 2.1× 10-10 1.0× 10-8 1.0× 10-8 1.0× 10-8 1.0× 10-8

a The FKN rate coefficients by Field, Ko¨rös, and Noyes; TFF by
Tyson, Field, and Fo¨rsterling; TFFK by Tyson, Field, Fo¨rsterling, and
Kshirsagar (see details (ref 5)): “Lo” and “Hi” (thermodynamically
consistent) rate coefficients suggested by Tyson (ref 17).
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the given specification in the GA, we take two steps to find the
rate coefficients in the experimental domain: First, we search
for rate coefficients in the range from 10-4 to 104 times of the
FKN rate coefficients, for which oscillations occur at the third
experimental point: [Br-]0 ) 4.8 × 10-4 M and [BrO3

-]0 )
1.4 × 10-1 M, (note thatk0, [Ce3+]0, and [H+]0 are fixed; see
the previous section), and then use these results to search for
the rate coefficients in the range from 10-2 to 102 times of those
coefficients to satisfy simultaneously unstable foci at the 4
experimental points.

The GA reveals that in the first step of the GA search trial,
no oscillations in the 4 -step mechanism (1,2,4,5) occur at the
experimental point, [Br-]0 ) 4.8 × 10-4 M and [BrO3

-]0 )
1.4 × 10-1 M; in other words, the 4 step (1,2,4,5) mechanism
exhibits oscillations, but not in the right range of the [Br-]0-
[BrO3

-]0 space, that is, the 4 -step mechanism fails to reproduce
the experimental domain. On the other hand, for the 5-step
mechanism (1,2,3,4,5), Table 3 shows the range of the five
forward rate coefficients, which yield the simultaneously the 4
unstable foci. In Table 4, we show five forward rate coefficients,
k1 ) 2.91,k2 ) 1.01× 1010, k3 ) 2.77× 107, k4 ) 6.94× 104,
k5 ) 4.60× 105, which are chosen from the range of the values
provided by the GA and that give very good agreement with
all comparable experiments: the 4 periods in the 5-step
mechanism at the 4 experimental inflow concentrations, and

oscillatory ranges of [BrO3-]0, at four fixed [Br-]0. Temporal
wave forms at the two experimental points: [Br-]0 ) 4.20×
10-4 M, [BrO3

-]0 ) 1.25× 10-1 M and [Br-]0 ) 4.80× 10-4

M, [BrO3
-]0 ) 1.40× 10-1 M are shown in Figure 3, which

shows that the period of waves generated by the 5-step
mechanism is in excellent agreement with the experiments. The
shape of waves is very similar to the experimental waves4 but
a direct comparison of the calculated waves with the experi-
mental ones is not feasible. A referee suggested that we lower
the values ofk2 andk4, each by a factor of 103. For those choices
of k2 andk4, we find no oscillations in the 5-step mechanism
with reaction steps (1,2,3,4,5), nor in the 7 step NFT mechanism,
within the ranges of inflow condition of the experiments
available.

Although the 4-step mechanism displays oscillation, it fails
to reproduce the experimental oscillation domain. The 5-step
mechanism, which is made up of the 4-steps in the 4-step
mechanism plus the additional reaction step 3, which is Br- +
H+ + HOBr H Br2 + H2O, manages to reproduce the
experimental domain. It follows that the reaction step 3 is
essential for reproduction of the experiments.

With use of the above five forward rate coefficients yielding
unstable foci for all four experimental conditions and the FKN
equilibrium constants, we search again which ones of the 3, 4,
and 5 steps reaction mechanisms discussed in section IIB have
oscillation domains in [Br-]0 on R1 × 10-4 M and [BrO3

-]0 on
R2 × 10-1 M (0 e R1, R2 e 10). We set [Ce3+] ) 3 × 10-4 M,
[H+]0 ) 0.75 M and flow rate 5× 10-3 sec.-1 The GA shows
that no reaction mechanism other than group I and II as
described in section IIIA have oscillations in the above assigned
range. Thus, the oscillatory mechanisms in section IIIA remain
the same; the smallest number of reaction steps is four in group
I and five in group II, that is, steps (1,2,4,5) and (1,2,3,4,5),
respectively. In conclusion, the oscillation domains in [Br-]0-
[BrO3

-]0 space for the 4-step mechanism (1,2,4,5), which does
not reproduce the experiments and the 5-step mechanism
(1,2,3,4,5), which does reproduce the experiments are given in
Table 5.

VI. Conclusions

The main part of this paper is the application of a genetic
algorithm to chemical kinetics to determine the reaction
mechanism and rate coefficients for a complex reaction network,
for which we choose the minimal bromate system. Starting with
10 given chemical species for the minimal bromate reaction
system,4,5 we develop a computer code, which includes the
genetic algorithm search method, to automate the determination
of the reaction mechanisms and (thermodynamically consistent)
rate coefficients to fit the given experimental [Br-]0-[BrO3

-]0

oscillation domain. The first part of the code incorporates

TABLE 3: Range of the Five Forward Rate Coefficients
Generated by the GA for the 5 -step Mechanism (1,2,3,4,5)a

rate
coeff range

k1 1.28-9.37
k2 (0.09-5.74)× 1010

k3 (0.01-1.74)× 109

k4 (1.18-18.6)× 104

k5 (4.23-10.2)× 105

a The GA optimizes four unstable focus conditions at the four
experimental points: [Br-]0 ) 3.90× 10-4 M and [BrO3

-]0 ) 1.12×
10-1 M, [Br-]0 ) 4.20 × 10-4 M and [BrO3

-]0 ) 1.25 × 10-1 M,
[Br-]0 ) 4.80 × 10-4 M, and [BrO3

-]0 ) 1.40 × 10-1 M, [Br-]0 )
5.30× 10-4 M, and [BrO3

-]0 ) 1.55× 10-4 M. The FKN equilibrium
constants are used to obtain the five backward rate coefficients. Constant
constraints of calculation: [Ce3+]0 ) 3 × 10-4 M, [H+]0 ) 0.75 M,
andk0 ) 5 × 10-3 s-1.

TABLE 4: Comparison of Oscillatory Domain in
[BrO 3

-]0-[Br -]0 Subspace and Periods Between the 5-step
Mechanism (1,2,3,4,5) and the Experimentsa

[Br-]0 × 10-4 [BrO3
-]0 × 10-1 period

range of [BrO3
-]0 × 10-1

(fixed [Br-]0)

experiment
3.65 1.10 493 1.08-1.20
4.20 1.25 260 1.16-1.45
4.80 1.40 185 1.27-1.58
5.30 1.55 156 1.39-1.64

5-step mechanism
3.87 1.10 565 1.08-1.16
4.20 1.25 253 1.14-1.35
4.80 1.40 183 1.24-1.54
5.30 1.55 151 1.36-1.58

a The range of [BrO3-]0, for which oscillations exists, is calculated
at each fixed [Br-]0. The five forward rate coefficients are chosen from
the range in Table 3:k1 ) 2.91,k2 ) 1.01× 1010, k3 ) 2.77× 107,
k4 ) 6.94× 104, k5 ) 4.60× 105. The FKN equilibrium constants are
used to obtain the five backward rate coefficients. Constant constraints
of calculation: [Ce3+]0 ) 3 × 10-4 M, [H+]0 ) 0.75 M andk0 ) 5 ×
10-3 s-1. The oscillatory range of the 5-step mechanism with the rate
coefficients obtained with the GA shows very good agreement with
the experimental domain.

TABLE 5: Oscillation Domains in [ Br-]0-[BrO 3
-]0 Space for

the 4-step Mechanism (1,2,4,5) and the 5-step Mechanism
(1,2,3,4,5) with the Rate Coefficients in TableVa

GA [BrO3
-]0 × 10-1 [Br-]0 × 10-4

4-step mechanism
(1,2,4,5) 1.13-1.63 1.54-1.95

5-step mechanism
(1,2,3,4,5) 1.06-1.56 3.72-5.46

a Constant constraints of calculation: [Ce3
+]0 ) 3 × 10-4 M, [H+]0

) 0.75 M andk0 ) 5 × 10-3 sec-1. The 4-step (1,2,4,5) mechanism
exhibits oscillations, but not in the right range of the [Br-]0-[BrO3

-]0

space, whereas the oscillation domain generated by the 5-step mech-
anism (1,2,3,4,5) is in very good agreement with the experiment (see
Table I).
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element balance conditions for reactions in steady states to
determine possible elementary reaction steps. Then the Horiuti
theory11 is used to determine the possible mechanisms compat-
ible with the overall reactions of the minimal bromate reaction
system. Next, we use a genetic algorithm to search which ones
of these possible mechanisms have oscillatory domains in the
[Br-]0-[BrO3

-]0 region as suggested by experiments. The GA
with the FKN rate coefficients revealed two groups of oscillatory
mechanisms; group I consists of reactions (1,2,4,5), (1,2,4,5,6),
and (1,2,4,5,7) in the NFT steps, and group II consists of
reactions (1,2,3,4,5) and (1,2,3,4,5,6,7). Group I has 9 species
(no Br2) with 4 independent species, whereas group II has 10
species with 5 independent species. On the basis of the forms
and domains of oscillation in the [Br-]0-[BrO3

-]0 space, and
the periods, we find that the 4 step (1,2,4,5) mechanism in group
I and the 5 step (1,2,3,4,5) mechanism in group II are irreducible
sets. Therefore, for both group I and II mechanisms, the steps
6 or 7 in NFT steps are not essential for the oscillations. Both
mechanisms with the FKN rate coefficients, however, fail to
fit well the experimental oscillatory domain in the [Br-]0-
[BrO3

-]0 space. Thus, the last part of the code is to use the GA
to determine the range of rate coefficients to fit the experimental
[Br-]0-[BrO3

-]0 oscillation domain for the 4 step (1,2,4,5) and
5 step (1,2,3,4,5) mechanisms. With the FKN equilibrium
constants, the 4 step (1,2,4,5) mechanism exhibits oscillation,
but not in the right range of the [Br-]0-[BrO3

-]0 space. On
the other hand, the 5 step (1,2,3,4,5) mechanism yields very
good agreement with comparable experiments with determina-
tion of the range of the five forward rate coefficients. The 5
steps (1,2,3,4,5) is made up of the 4-step mechanism plus step
3 in NFT set (6), which indicates that step 3 is essential for
reproduction of the experimental results.

Because of the generality of the procedures discussed here,
we believe that the genetic algorithm optimization is useful and

promising for determining reaction mechanisms and rate coef-
ficients for complex reaction networks.
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